100 research outputs found

    CoRD: Converged RDMA Dataplane for High-Performance Clouds

    Full text link
    High-performance networking is often characterized by kernel bypass which is considered mandatory in high-performance parallel and distributed applications. But kernel bypass comes at a price because it breaks the traditional OS architecture, requiring applications to use special APIs and limiting the OS control over existing network connections. We make the case, that kernel bypass is not mandatory. Rather, high-performance networking relies on multiple performance-improving techniques, with kernel bypass being the least effective. CoRD removes kernel bypass from RDMA networks, enabling efficient OS-level control over RDMA dataplane.Comment: 11 page

    Energy-Utility Function-Based Resource Control for In-Memory Database Systems LIVE

    Get PDF
    The ever-increasing demand for scalable database systems is limited by their energy consumption, which is one of the major challenges in research today. While existing approaches mainly focused on transaction-oriented disk-based database systems, we are investigating and optimizing the energy consumption and performance of data-oriented scale-up in-memory database systems that make heavy use of the main power consumers, which are processors and main memory. In this demo, we present energy-utility functions as an approach for enabling the operating system to improve the energy efficiency of scalable in-memory database systems. Our highly interactive demo setup mainly allows attendees to switch between multiple DBMS workloads and watch in detail how the system responds by adapting the hardware configuration appropriately

    Flattening Hierarchical Scheduling.

    Get PDF
    ABSTRACT Recently, the application of virtual-machine technology to integrate real-time systems into a single host has received significant attention and caused controversy. Drawing two examples from mixed-criticality systems, we demonstrate that current virtualization technology, which handles guest scheduling as a black box, is incompatible with this modern scheduling discipline. However, there is a simple solution by exporting sufficient information for the host scheduler to overcome this problem. We describe the problem, the modification required on the guest and show on the example of two practical real-time operating systems how flattening the hierarchical scheduling problem resolves the issue. We conclude by showing the limitations of our technique at the current state of our research

    Architecture and Advanced Electronics Pathways Toward Highly Adaptive Energy- Efficient Computing

    Get PDF
    With the explosion of the number of compute nodes, the bottleneck of future computing systems lies in the network architecture connecting the nodes. Addressing the bottleneck requires replacing current backplane-based network topologies. We propose to revolutionize computing electronics by realizing embedded optical waveguides for onboard networking and wireless chip-to-chip links at 200-GHz carrier frequency connecting neighboring boards in a rack. The control of novel rate-adaptive optical and mm-wave transceivers needs tight interlinking with the system software for runtime resource management

    The Orchestration Stack: The Impossible Task of Designing Software for Unknown Future Post-CMOS Hardware

    Get PDF
    Future systems based on post-CMOS technologies will be wildly heterogeneous, with properties largely unknown today. This paper presents our design of a new hardware/software stack to address the challenge of preparing software development for such systems. It combines well-understood technologies from different areas, e.g., network-on-chips, capability operating systems, flexible programming models and model checking. We describe our approach and provide details on key technologies
    • …
    corecore